Helly and Radon-type theorems in interval convexity spaces
نویسندگان
چکیده
منابع مشابه
Radon partitions in convexity spaces
Tverberg’s theorem asserts that every (k − 1)(d + 1) + 1 points in R can be partitioned into k parts, so that the convex hulls of the parts have a common intersection. Calder and Eckhoff asked whether there is a purely combinatorial deduction of Tverberg’s theorem from the special case k = 2. We dash the hopes of a purely combinatorial deduction, but show that the case k = 2 does imply that eve...
متن کاملTolerance in Helly-Type Theorems
In this paper we introduce the notion of tolerance in connection with Helly type theorems and prove, using the Erdős-Gallai theorem, that any Helly type theorem can be generalized by relaxing the assumptions and conclusion, allowing a bounded number of exceptional sets or points. In particular, we analyze some of the classical Helly type theorems, such as Caratheodory’s and Tverberg’s theorems,...
متن کاملHelly-Type Theorems in Property Testing
Helly’s theorem is a fundamental result in discrete geometry, describing the ways in which convex sets intersect with each other. If S is a set of n points in R, we say that S is (k,G)-clusterable if it can be partitioned into k clusters (subsets) such that each cluster can be contained in a translated copy of a geometric object G. In this paper, as an application of Helly’s theorem, by taking ...
متن کامل4 Helly - Type Theorems and Geometric
INTRODUCTION Let F be a family of convex sets in R. A geometric transversal is an affine subspace that intersects every member of F . More specifically, for a given integer 0 ≤ k < d, a k-dimensional affine subspace that intersects every member of F is called a ktransversal to F . Typically, we are interested in necessary and sufficient conditions that guarantee the existence of a k-transversal...
متن کامل4 Helly-type Theorems and Geometric Transversals
INTRODUCTION Let F be a family of convex sets in R. A geometric transversal is an affine subspace that intersects every member of F . More specifically, for a given integer 0 ≤ k < d, a k-dimensional affine subspace that intersects every member of F is called a ktransversal to F . Typically, we are interested in necessary and sufficient conditions that guarantee the existence of a k-transversal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1974
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1974.51.363